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Preprocessing
Intro	to	Independent	Component	Analysis



Preprocessing	&	artifacts
THE	MOST	IMPORTANT	THING	TO	KNOW	ABOUT	EEG	PREPROCESSING



Preprocessing	&	artifacts
THE	MOST	IMPORTANT	THING	TO	KNOW	ABOUT	EEG	PREPROCESSING

• How	to	obtain	clean	data
• Keep	electrode	impedance /	resistance	low
• Remove	external	sources	of	artifacts

• Turn	off	phones
• Turn	of	unnecessary	electronic	devices

• Brief	participant to	not	produce	unnecessary	artifacts
• Jaw	clenching
• Gum	chewing
• …

• (Use	copper	chamber	to	avoid	line	noise	artifacts)



Types	of	Artifacts
Endogenous	 vs.	Exogenous	[physiological	vs.	non-physiological]

Endogenous
- Eye-movements

- Blinks
- Saccades
- …

- Electromyogram
- Jaw	clenching
- Neck	muscles

- Sweat
- Cardiac
- (Alpha)

Exogenous
- Electrode	artifacts
- Lead	movement
- Salt	bridge
- Line	noise
- Phone



Types	of	artifacts

• From	an	analysis	perspective,	a	more	classification	of	artifacts	than	physiological	
vs.	non-physiological	is	“stereotypical”	vs.	”non-stereotypical”

Stereotypical	vs.	non-stereotypical

Non-stereotypical	artifacts
• Only	occur	intermittently
• Look	unique	every	time	they	occur
• Examples

• EMG	artifacts
• Sweat	artifacts
• Some	electrode	artifacts

Stereotypical	artifacts
• Ongoing	/	recurrent	through	all	(or	most)	of	the	

dataset
• Look	(roughly)	the	same	every	time	they	occur
• Examples

• Blinks
• Saccades
• Some	electrode	artifacts
• Line	Noise



Types	of	artifacts

• Non-stereotypical	artifacts
• Mostly	call	for	removal	of	time-segments	of	data	(i.e.,	delete	all	channel	data	for	a	given	
time	range	from	the	dataset)

• Stereotypical	artifacts
• Can	often	be	removed	from	the	data	without	discarding	actual	time	segments
• Many	methods	exists	depending	on	the	artifact

• Channel	removal	(and	interpolation)	for	electrode	artifacts
• Regression	methods	for	eye-blink	removal	(e.g.,	Gratton et	al.,	1983)
• Notch	filtering	for	line	noise	artifact

• Can	very	easily	addressed	using	Independent	Component	Analysis

Stereotypical	vs.	non-stereotypical	artifacts



Preprocessing

• Frequency-domain	restriction
• Done	via	filtering
• No	differences	between	regular	filtering	(e.g.,	for	a	classic	ERP	study)	and	single-trials

• Artifact	rejection
• Removing	time	periods	with	artifacts	(deleting	them	from	the	data)
• Non-stereotypic	artifacts	only
• Mostly	done	to	retain	the	maximum	of	available	data	dimensions	for	ICA

• Artifact	correction
• Done	via	Independent	Component	Analysis
• Data	segments	are	retained,	but	artifacts	are	calculated	out	of	the	data
• Part	of	the	preprocessing	(but	also	helpful	later	to	increase	SNR	for	single-trial	analyses)

A	typical	EEG	preprocessing	pipeline



Preprocessing	step	1
Frequency-domain	restriction	via	filtering



Filtering

• (Temporal)	filtering refers	to	the	removal	of	selected	frequencies	from	the	
overall	EEG	signal

• For	the	majority	of	purposes,	the	scalp	EEG	signal	only	contains	meaningful	
informationbetween	around	.1	Hz	and	~60Hz

• Many	artifactshave	frequency	properties	that	are	above	(or	below)	that	band
• Therefore,	the	most	commonly	used	primary	artifact	removal	technique	is	
filtering	to	restrict	the	frequency	information	present	in	the	recording

• High-pass	filters let	high	frequencies	past	->	remove	low	frequencies
• Low-pass	filters	let	low	frequencies	past	->	remove	high	frequencies

• Filtering	is	usually	already	done	on	the	hardware	side
• Recording	frequencies	are	restricted	to	a	band	of	e.g.,	.01	Hz	– Nyquist	freq
• If	no	low-pass	cut	off	is	provided,	the	sampling	rate	provides	an	implicit	low-pass	filter

Overview



Filtering
Understanding	the	EEG	signal	as	a	frequency	composition

ISBN: 978-0262019873



Filtering

• Convolution
• A	time	series	of	one	signal	weighted	by	another	signal	that	slides	along	the	first	signal

• In	EEG	practice,	convolution	means
• Computing	the	dot	product	of	the	signal at	one	time	point	with	a	filter	kernel
• Computing	the	same	dot	product	of	the	next	time	point,	etc.
• Summing	up	the	results

Understanding	time-domain	convolution	and	the	dot	product



Filtering

• Filtering	is	achieved	by	designing	a	kernel	with	a	specific	set	of	frequency	
properties

• Through	the	principles	of	convolution,	the	frequency	profile	of	the	signal	is	passed
through	the	frequency	profile	of	the	kernel

Filtering	via	time	domain	convolution



Filtering
Understanding	the	EEG	signal	as	a	frequency	composition

LOW	PASS	FILTER HIGH	PASS	FILTER



Filtering
Filtering	via	time	domain	convolution



Preprocessing	step	2
Artifact	rejection



Artifact	rejection

• Non-stereotypic	artifacts
• Only	occur	intermittently
• Look	unique	every	time	they	occur
• Examples

• EMG	artifacts
• Sweat	artifacts
• Some	electrode	artifacts

• Can	be	done	on	epochs	or	continuous	data
• Automated	algorithms

• Use	data	features	to	identify	artifacts
• Peak
• Range
• Data	distribution	features	(kurtosis,	probability	/	dispersion	/	standard	deviation)

Non-stereotypic	artifacts



Preprocessing	step	3
Artifact	correction	via	ICA



Helpful	resources
ICA	books

James	V.	Stone:
Independent	 Component	Analysis
– A	Tutorial	Introduction
MIT	Press	(2004)

Aapo	Hyvärinen,	Juha	Karhunen,	Erkki	Oja:
Independent	 Component	Analysis

John	Wiley	&	Sons	(2001)



Blind	source	separation	and	ICA
The	‘cocktail	party’	example

SOURCE	SIGNALS MIXING SIGNAL	MIXTURE



Why	this	matters	for	EEG
EEG	is	an	ideal	blind	source	separation	problem

UNDERLYING DIPOLES SCALP	SIGNAL

W=?



Using	PCA	to	understand	ICA



PCA

• Is	the	current	variable	layout	(coordinate	system)	the	ideal	way	to	represent	the	
information	in	my	data?

Rotational	data	transformations

Information	content	(Variance)

Variance



PCA

• PCA	rotates	the	coordinate	system	so	that	the	first	variable	catches	the	most	
possible	variance	in	the	signal.	This	new	variable	is	called	a	‘principal	component’

Rotational	data	transformations



PCA

• Each	subsequent	variable	is	then	extracted	to	capture	the	most	possible	
remaining	(residual)	variance.

Rotational	data	transformations



PCA

• Per	definition,	that	variable	will	be	orthogonal	to	the	first	variable.	Otherwise,	it	
would	share	variance	with	the	first	variable,	and	therefore	explain	redundant	
information.

Rotational	data	transformations



PCA

• In	consequence,	observations	are	now	characterized	by	how	strongly	they	load	
onto	the	new	variables	(components),	instead	of	the	original	ones.

Rotational	data	transformations



PCA

• PCA	is	ideal	to	reduce	the	data	dimensionality	– it	often	seeks	to	represent	many	
original	variables	using	fewer	components.

Rotational	data	transformations



PCA

• A	practical	question	is	how	many	components	ideally	should	be	selected	to	
reflect	the	data.	This	is	often	done	via	Scree	plots.

Rotational	data	transformations



PCA	vs.	ICA

• Purpose:
• PCA:	Reduce	data	to	represent	information	using	fewer	variables
• ICA:	Transform	data	to	represent	underlying	independent	source	signals

• Extraction	property (“What	do	the	new	variables	represent?”)
• PCA:	Variance	(varimax principle)
• ICA:	Independence	/	non-gaussianity

• Transformational	properties
• PCA:	Orthogonal	transformation	(most	cases),	dictated	by	varimax principle
• ICA:	Non-orthogonal	transformation

Conceptual	differences	and	similarities	between	PCA	and	ICA



Focus	on	ICA



Blind	Source	Separation

• ICA	infers	source	signals	from	three	differences	between	source	signals	and	signal	
mixtures

• Independence: Source	signals	are	independent,	while	mixtures	are	not
• Gaussianity: A	mixture	of	two	source	signals	is	always	more	gaussian (CLT)
• Complexity: Complexity	of	any	mixture	is	greater	than	that	of	the	simplest	source	signal

• Basic	principle	for	recovering	(un-mixing)	source	signals
• If	signals	that	are	extracted	from	a	set	of	mixtures	are	independent,	or	non-gaussian,	or	of	
low	complexity,	then	they	must	be	source	signals

The	ICA	approach



ICA	implementations:	the	non-gaussianity approach

• (Implication	of	the)	central	limit	theorem:
Any	mixture	of	2	or	more	random	variables	(signals)	will	be	“more	gaussian”	than	its	
constituent	random	variables	(signals)

Inverse	statement:
If	one	finds	the	transformation	yielding	the	“least	gaussian”	signal	components,	these	
signal	components	are	likely	closest	to	the	original	source	signal	configuration

->	The	key	to	(one	family)	of	ICA	is	non-gaussianity

• Non-gaussianity of	a	probability	density	function	(pdf)	of	a	variable	/	signal	
component	can	be	measured	by

• Kurtosis	(e.g.	projection	pursuit)
• Kullback-Leibler-Divergence	(e.g.	FastICA Algorithm)

Non-gaussianity



Kurtosis
Moments	of	probability	distributions



Wrapping	up	ICA
An	example	to	illustrate	ICA	vs.	PCA



Wrapping	up	ICA
An	example	to	illustrate	ICA	vs.	PCA



Wrapping	up	ICA
An	example	to	illustrate	ICA	vs.	PCA

Varimax PCA	solution



Wrapping	up	ICA
An	example	to	illustrate	ICA	vs.	PCA

Varimax PCA	solution



Wrapping	up	ICA
An	example	to	illustrate	ICA	vs.	PCA

ICA	solution



Wrapping	up	ICA
An	example	to	illustrate	ICA	vs.	PCA

ICA	solution



Wrapping	up	ICA

• The	original	combined	kurtosis	is	quantified	for	each	variable

• In	practice,	the	above	equation	is	quantified	for	each	EEG	data	channel
• Then,	the	‘coordinate	system’	is	randomly	rotated,	and	the	kurtosis	of	the	new	
variables	is	quantified	(i.e.,	the	above	equation	is	applied	to	what	is	now	the	
‘independent	component	activations’)

• If	the	resultant	kurtosis	is	higher,	the	coordinate	system	is
rotated	further	in	the	same	direction	until	a	peak	is	reached

• The	final	‘coordinate	system’	is	the	one	with	the
highest	combined	kurtosis

ICA	in	practice	(kurtosis	example)



Problems	and	shortcomings	of	ICA

• Overfitting:More	sensors	than	signals
• Underfitting:More	signals	than	sensors
• Temporal	order	of	signals

• ICA	disregards	temporal	ordering	of	signals
• ICA	assumes	samples	to	be	independent	over	time

• Gaussian	sources:More	than	one	gaussian source	can	not	be	modelled	in	
standard	ICA

• Significant	time	delay between	sensors	due	to	distance	makes	ICA	unfeasible
• ICA	is	blind	towards	source	signal	power
• Gradient	search	methods	find	only	local	maxima

Overview



ICA	in	practice
Rejecting	stereotypical	EEG	artifacts



EEG	in	practice
Visualizing	the	output



Artifact	correction	using	ICA
Blinks



Artifact	correction	using	ICA
Saccades



Artifact	correction	using	ICA
Electrode	artifacts



Supplemental	slides



Filtering
Convolution:	visual	example

Source:	https://en.wikipedia.org/wiki/Convolution



Filtering

• The	fourier transform	identifies	frequency	components	of	an	EEG	signal
• It	works	by	convolving	sine-waves of	different	frequencies	with	the	EEG

• Making	a	loop	that	cycles	through	the	frequencies	of	interest
• Generates	a	(complex)	sine	wave	at	that	frequency
• Convolutes	the	sine	wave	with	the	signal

• The	result	of	the	convolution	at	each	frequency	is	the	‘fourier coefficient’,	a	
measure	of	the	power	of	that	particular	frequency

• The	inverse	fourier transform	then	denotes	a	reconstruction	of	the	signal	using	
the	same	principle

• Build	sine	waves	of	specific	frequencies
• Multiply	them	by	the	timeline	of	fourier coefficients
• Average	all	the	sine	waves

The	fourier transform



Filtering

• A	filter is	now	simply	an	artificially	introduced	(i.e.,	user-controlled)	differential	
weighting	of	the	sine	waves	prior	to	inverse	fourier transforming	the	signal

• This	weighting	across	frequencies	is	called	the	filter’s	“frequency	response	
function”

Understanding	a	filter	in	the	frequency	domain



Filtering

• Another	way	to	think	about	filtering	is	through	convolution	in	the	time	domain
• Multiplication	in	the	frequency	domain	=	convolution	in	the	time	domain	
(Convolution	theorem)

• In	that	sense,	filtering	is	achieved	by	designing	a	kernel	with	a	specific	set	of	
frequency	properties

• Through	the	principles	of	convolution,	the
frequency	profile	of	the	signal	is	passed
through	the	frequency	profile	of	the	kernel

The	convolution	theorem
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Single-trial	EEG	analysis	workshop
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Using	ICA	to	increase	single-trial	SNR



Using	ICA	to	analyze	EEG	data

1. As	a	preprocessing	/	artifact	correction	method
Jung et	al.,	Psychophysiology 2000;	Joyce et	al.,	Psychophysiology 2004; Li et	al.,	Physiological	Measurement	2006;	Nolan et	
al.,	J	Neurosci Methods	2010;	Winkler et	al.,	Behavioral	and	Brain	Functions	2011;	Mognon et	al.,	Psychophysiology 2011;	
Viola et	al.,	Clinical	Neurophysiology	2009;	…

2. As	a	method	to	increase	signal-to-noise	ratio
Jung	et	al. Human	Brain	Mapping 2001; Makeig et	al.,	Science 2002;	Cao	et	al.,	Neurocomputing 2002; Debener et	al.,	J	
Neurosci 2005;	Iyer&	Zouridakis,	 Cinical Neurophysiology	 2007;	Eichele et	al.,	Int J	Psychophysiology	2008;	Wessel &	
Ullsperger,	NeuroImage 2011;	Wessel &	Aron,	Psychophysiology 2015;	Wessel,	Cerebral	Cortex	2017;	Wessel,	
Psychophysiology	2017;	…

3. To	test	multiple	psychological	processes	for	common	neural	mechanisms
Fogelson et	al.,	Clinical	Neurophysiology	2004;	Gentsch et	al.,	NeuroImage 2009;	Hoffmann&	Falkenstein,	Human	Brain	
Mapping 2010;	Roger et	al.,	NeuroImage 2010;	Wessel et	al.,	J	Neurosci 2012;	Wessel &	Aron,	 J	Neurosci 2013;	Torrecillos et	
al.,	J	Neurosci 2014;	Wessel &	Aron,	NeuroImage2014;	Wessel et	al.,	Nature	Communications	 2016;	Wessel,	Cerebral	Cortex	
2017;	Dutra et	al.,	J	Neurosci 2018…

for	a	review,	see:	Wessel,	Brain	Topography	2018

Three	main	ways



Using	ICA	to	analyze	EEG	data

1. As	a	preprocessing	/	artifact	correction	method
• Strategy:

• Identify	artifact	components
• Set	their	weights	in	the	mixing	matrix	to	zero
• Use	all	non-artifact	components	to	reconstruct	the	signal

2. As	a	method	to	increase	signal-to-noise	ratio
• Strategy:

• Identify	component	that	reflects	process	of	interest
• Set	all	other	weights	in	the	mixing	matrix	to	zero
• Use	only	this	component	to	reconstruct	the	channel	space	signal

3. To	test	multiple	psychological	processes	for	common	neural	mechanisms
• Strategy:

• Identify	component	that	reflects	process	of	interest
• Investigate	whether	other	events	in	the	experiment	yield	activity	in	that	component

Three	main	ways



Core	to	all	three	methods

• Component	selection is	key	to	all	approaches
• The	earliest	instances	of	each	approach	used	subjective	criteria

• For	artifact	correction	purposes,	this	is	likely	fine
• However,	when	selecting	ICs	that	reflect	processes	of	interest	for	the	purpose	of	
statistical	inference,	such	researcher	degrees	of	freedom	are	suboptimal.

• Hence,	automatic,	algorithmic	approaches	to	component	selection	are	necessary

Find	a	way	to	pick	the	right	components

Debener et	al.,	J	Neurosci 2005

APPROACH	2



Core	to	all	three	methods

• There	are	many	algorithmic	approaches	aimed	at	
identifying	artifact	components

• Examples	of	toolboxes
• CORRMAP	(Viola	et	al.,	2009)
• FASTER	(Nolan	et	al.,	2010)
• ADJUST	(Mognon et	al.,	2011)

• However,	these	approaches	are	suboptimal	to	pick	
components	related	to	cognitive	processes,	as	they	
overwhelmingly	focus	on	spatial	properties

Find	a	way	to	pick	the	right	components

Viola et	al.,	Clinical	Neurophysiology	2009



Core	to	all	three	methods
Find	a	way	to	pick	the	right	components



Core	to	all	three	methods

• When	we	are	looking	for	independent	components	that	explain	event-related	
brain	potentials,	we	want	to	look	for	event-related	activity	patterns

• One	approach	to	do	so	is	to	use	measures	that	target	explained	variance

Find	a	way	to	pick	the	right	components



An	alternative	approach
The	COMPASS	logic/tool	(Wessel	&	Ullsperger,	NeuroImage 2011)



An	alternative	approach
The	COMPASS	logic/tool	(Wessel	&	Ullsperger,	NeuroImage 2011)

Obtain spatiotemporal ERP template
STEP 1

Determine “significantly active“ electrodes
STEP 2

Identifiy ICs with overlapping topography
STEP 3

Obtain ERP timecourses at electrodes
STEP 4a

Comparison of IC & ERP timecourses
STEP 5

Obtain IC timecourses
STEP 4b



Contrast:	the	manual	approach

• „classic“	manual	approach;	utilizes	information	about:

• TOPOGRAPHY
e.g.:	frontocentral voltage	distribution

• TIMERANGE
e.g.:	Peaks	at	approx.	100ms	post-response

• POLARITY
e.g.:	Is	a	Negavity

• FREQUENCY	COMPOSITION
e.g.:	Prominent	 theta-band	activity

• FUNCTIONAL	PROPERTIES
e.g.:	Is	enlarged	 for	a	specific	subset	of	trials

Assumptions	and	decisions



The	COMPASS	approach
Only	assumption:	time	range



The	COMPASS	approach
Step	1:	What	is	a	‘significantly	active	electrode’?

Grubbs Test	forOutliers



The	COMPASS	approach
Step	2:	Find	components	whose	weight	matrix	shows	maxima	at	those	electrodes

ERPIndependent	Components



The	COMPASS	approach
Step	3:	Pull	out	template	ERP	at	each	‘significant’	electrode



The	COMPASS	approach
Step	4:	Pull	out	component	activations



The	COMPASS	approach
Step	5:	Test	time	courses	for	significant	correlations	with	template	ERP



→ →
NO	MATCH!

COMPASS	Algorithm
Wessel	&	Ullsperger,	NeuroImage,	2011



→ →
→ →

→

R?
MATCH!

COMPASS	Algorithm
Wessel	&	Ullsperger,	NeuroImage,	2011



COMPASS
GUI	layout



COMPASS
Download	and	install www.wessellab.org



COMPASS
Download	and	install



COMPASS

• Channel	*	timepoint *	epoch	datafile
• Time-locked	to	event	of	interest
• Essentially,	what	would	go	into	your	ERP	analysis

• Optional:	A	second	matrix	of	another
condition,	identical	layout

• Remove	non	10-20	EEG	channels
(EOG,	Mastoids,	etc.)

Data	input



COMPASS
Output



COMPASS
Output



COMPASS
Output
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Time-frequency	analyses



Introduction	to	time-frequency	analysis

• Downsides	of	the	ERP	method
• Physiological	Basis
• Phase-locked	vs.	non-phase-locked	information
• Informational	representation	of	a	physiological	signal

Why	do	it?



Event-related	potentials
The	phase-locking	problem



Event-related	potentials

• Bits	of	information	in	typical	event-related	EEG	dataset

e number	of	electrodes
p number	of	time-points	after	event
t number	of	individual	trials
f number	of	informative	frequencies
phase	&	power

INFORMATION(bits)	=	e	*	p	*	t	*	f	*	2

• Example	of	a	typical	experiment:
64	electrodes,	500	Hz	sampling	rate.
400	instances	(trials)	of	interest	for	event-type	in	question.

• Assuming	that	there	are	~5	meaningful	frequency	bands	in	EEG	and	we’re	interested	in	
brain	activity	~500ms	after	the	event,	the	informational	content	of	the	recording	is

64	*	250	*	400	*	5	*	2	=	64	million	bits	of	information

Information	content	of	the	EEG



Event-related	potentials

• The	ERP	method
• Disregards	phase	information	/	only	includes	phase-locked	activity
->	64	million	/	2	=	32	million	bits

• Averages	information	across	all	frequencies	/	does	not	resolve	the	signal	by	frequency
->	32	million	/	5	=	6.4	million	bits

• Averages	across	all	trials
->	6.4	million	/	400	=	16,000	bits

• Selects	only	one	electrode
->	16,000	/	64	=	250	bits

• Cares	only	about	one	latency	(or	averages	across	a	range)
->	250	/	250	=	1	bit

• Hence,	in	this	example,	for	each	subject	and	condition,	the	ERP	method	reduces	a	
signal	with	64	million	bits	of	information	to	1	bit	of	information

• Single	trial	time-frequency	analysis	adds	information	by	a	factor	of	t *	f *	2

Information	content	of	the	EEG



What’s	in	a	time	series?
Frequency,	phase,	power



Time-frequency	analysis

• Sliding-window	Fast-fourier transform	using	(multi)tapers
• Convolution	is	used	in	the	fourier transform	(a	series	of	complex	sine	waves	are	convolved	
with	the	data	to	extract	power	and	phase	at	the	frequencies	of	the	sine	waves)

• Bandpass-filter	+	Hilbert transform
• Convolution	is	used	during	filtering	and	during	the	Hilbert	transform	itself	(where	a	Hilbert	
/	Cauchy	kernel	is	used	to	extract	an	analytic	signal)

• Wavelet Convolution
• Complex	wavelets	are	convolved	with
the	signal	to	extract	power	and	phase
information	according	to	the	wavelet
properties

Most	common	approaches



Time-frequency	analysis

• These	analyses	do	two	things:
• They	resolve your	time	domain	signal	into	its	constituent	frequencies
• They	allow	an	independent	quantification	of	power and	phase

• Hence,	unlike	in	an	ERP,	you	are	not	looking	at	a	vector	of	values	
size(ERP) = 1500x1

but	instead,	you	are	looking	at	two	time	*	frequency	matrices
size(TF_ERP) = 1500x30

(one	for	phase,	one	for	power)

• However,	the	principles	of	single-trial	regression	remain	exactly	the	same
• Instead	of	modelling	every	time	point	after	an	event,	you	now	model	every	point	in	the	
time	X	frequency	matrix.

• Be	sure	to	account	for	the	additional	test	using	corrections	for	multiple	comparisons

Data	structures



Example
Surprise	interrupts	working	memory

Wessel et al., Nature Communications 2016



DV
IVEvery single

Novel trial
WM failure? (0/1)

SURPRISE * WM Interaction

Single-trial EEG response (after cue onset)

Freq * samples
Analytic matrix

Output∀f = {1...nfreq};∀s = {1...nsamp} :

Y
^

f ,s = β0 +βSurprise +βWM +βSurprise*WM +ε

EACH INDIVIDUAL SUBJECT:

Does	this	relate	to	WM	interruption?
Example

Amount of surprise



Does	this	relate	to	WM	interruption?
Example

Wessel et al., Nature Communications 2016


