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Session 2
Preprocessing
Intro to Independent Component Analysis



THE MOST IMPORTANT THING TO KNOW ABOUT EEG PREPROCESSING




THE MOST IMPORTANT THING TO KNOW ABOUT EEG PREPROCESSING

* How to obtain clean data
» Keep electrode impedance / resistance low

 Remove external sources of artifacts
e Turn off phones
* Turn of unnecessary electronicdevices
* Brief participant to not produce unnecessary artifacts

e Jaw clenching
* Gum chewing

e (Use copper chamberto avoid line noise artifacts)



Endogenous vs. Exogenous [physiological vs. non-physiological]

Endogenous
Eye-movements

- Blinks
- Saccades

- Electromyogram
- Jawclenching
- Neck muscles
- Sweat
- Cardiac
- (Alpha)

Exogenous

- Electrode artifacts
- Lead movement

- Salt bridge

- Line noise

- Phone



Stereotypical vs. non-stereotypical

* From an analysis perspective, a more classification of artifacts than physiological
vs. non-physiological is “stereotypical”’ vs.” non-stereotypical”

Stereotypical artifacts Non-stereotypical artifacts
* Ongoing/ recurrent through all (or most) of the * Onlyoccurintermittently
dataset  Lookuniqueeverytime they occur
* Look (roughly)the same every time they occur  Examples
 Examples e EMG artifacts
* Blinks e Sweat artifacts
e Saccades * Some electrode artifacts

e Some electrode artifacts
* Line Noise



Stereotypical vs. non-stereotypical artifacts

* Non-stereotypical artifacts

* Mostly call for removal of time-segments of data (i.e., delete all channel data for a given
time range from the dataset)

 Stereotypical artifacts
e Can often be removed from the data without discarding actual time segments

* Many methods exists depending on the artifact
* Channelremoval (and interpolation) for electrode artifacts
* Regression methods for eye-blinkremoval (e.g., Gratton et al., 1983)
* Notch filteringfor line noise artifact

e Can very easily addressed using Independent Component Analysis



A typical EEG preprocessing pipeline

* Frequency-domain restriction
* Donevia filtering
* No differences between regular filtering (e.g., for a classic ERP study) and single-trials

* Artifact rejection
 Removingtime periods with artifacts (deleting them from the data)
* Non-stereotypic artifacts only
* Mostly done to retain the maximum of available data dimensions for ICA

* Artifact correction
* Donevia IndependentComponent Analysis
* Data segments are retained, but artifacts are calculated out of the data
* Part of the preprocessing (but also helpful later to increase SNR for single-trial analyses)



Preprocessing step 1

Frequency-domain restriction via filtering



Overview

* (Temporal) filtering refers to the removal of selected frequencies from the
overall EEG signal

* For the majority of purposes, the scalp EEG signal only contains meaningful
information between around .1 Hz and ~60Hz

* Many artifacts have frequency properties that are above (or below) that band

* Therefore, the most commonly used primary artifact removal technique is
filtering to restrict the frequency information presentin the recording

* High-pass filters let high frequencies past -> remove low frequencies
* Low-pass filters let low frequencies past -> remove high frequencies

* Filtering is usually already done on the hardware side
* Recording frequencies are restricted to a band of e.g., .01 Hz — Nyquist freq
* If nolow-pass cut off is provided, the sampling rate providesan implicitlow-pass filter



Understanding the EEG signal as a frequency composition

ANALYZING NEURAL TIME SERIES DATA

Theory and Practice

ISBN: 978-0262019873
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Understanding time-domain convolution and the dot product

* Convolution
* Atime series of one signal weighted by another signal that slides along the first signal

* In EEG practice, convolution means
 Computingthe dot product of the signal at one time point with a filter kernel
 Computingthe same dot product of the next time point, etc.
 Summing up the results
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Filtering via time domain convolution

* Filtering is achieved by designing a kernel with a specific set of frequency

properties
* Through the principlesof convolution, the frequency profile of the signal is passed
through the frequency profile of the kernel

A) Sine wave and narrow Gaussian B) Sine wave and wide Gaussian
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Understanding the EEG signal as a frequency composition

LOW PASS FILTER
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Filtering via time domain convolution

" EEG data

Gaussian

1 1 1 1 1 1 1 1 1

Time (ms)
Individual spectra Multiplied spectra
_ I \ FFT Gaussian FFT data .* FFT Gaussian
()
2
S FFT data
0 20 40 60 0 20 40 60

Frequency (Hz) Frequency (Hz)



Preprocessing step 2

Artifact rejection



Non-stereotypic artifacts

* Non-stereotypic artifacts
* Onlyoccurintermittently
 Lookuniqueeverytime they occur
e Examples
 EMG artifacts
* Sweat artifacts
* Some electrode artifacts

* Can be done on epochs or continuous data

* Automated algorithms

* Use data features to identify artifacts
* Peak
* Range
* Datadistribution features (kurtosis, probability / dispersion / standard deviation)



Preprocessing step 3

Artifact correction via ICA



ICA books

INDEPENDENT COMPONENT ANALYSIS

A Tutorial Introduction James V. Stone

James V. Stone:

Independent Component Analysis
— A Tutorial Introduction

MIT Press (2004)

INDEPENDEN
COMPONENI;
ANALYSIS

Aapo Hyvdérinen
Juha Karhunen
Erkki Oja

Aapo Hyvarinen, Juha Karhunen, Erkki Oja:
Independent Component Analysis

John Wiley & Sons (2001)



The ‘cocktail party’ example
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Using PCA to understand ICA



Rotational data transformations

* |s the current variable layout (coordinate system) the ideal way to represent the
information in my data?
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Rotational data transformations

* PCA rotates the coordinate system so that the first variable catches the most
possible variance in the signal. This new variable is called a ‘principal component’

NEW Variable 2

NEW Variable 1
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Rotational data transformations

e Each subsequentvariable is then extracted to capture the most possible
remaining (residual) variance.

NEW Variable 2

NEW Variable 1
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Rotational data transformations

* Per definition, that variable will be orthogonal to the first variable. Otherwise, it
would share variance with the first variable, and therefore explain redundant
information. —

NEW Variable 1
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Rotational data transformations

* In consequence, observations are now characterized by how strongly they load
onto the new variables (components), instead of the original ones.
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Rotational data transformations

* PCA is ideal to reduce the data dimensionality — it often seeks to represent many
original variables using fewer components.

—
=
- ® o qc) ®l e
Y
cA * Q
S 'Y o o °lo o
c =
o e O (o) Pl P S >
o O
5 * . S °1-
) —
© o © E o | ©®
(o} ® - 1]
g o ® a- ol ©
E ® o > ®le

Principal Component 2 Principal Component 2



Rotational data transformations

* A practical question is how many components ideally should be selected to
reflect the data. This is often done via Scree plots.
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Conceptual differences and similarities between PCA and ICA

* Purpose:
* PCA: Reduce data to represent information using fewer variables
* |CA: Transform data to represent underlyingindependentsource signals

e Extraction property (“What do the new variables represent?”)
* PCA: Variance (varimax principle)
* ICA: Independence / non-gaussianity

* Transformational properties

* PCA: Orthogonal transformation (most cases), dictated by varimax principle
* |CA: Non-orthogonal transformation



Focus on ICA



The ICA approach

* ICA infers source signals from three differences between source signals and signal
mixtures

* Independence: Source signals are independent, while mixtures are not
e Gaussianity: A mixture of two source signals is always more gaussian (CLT)

* Basic principle for recovering (un-mixing) source signals

* |f signals that are extracted from a set of mixtures are independent, or non-gaussian, or of
low complexity, then they must be source signals



Non-gaussianity

* (Implication of the) central limit theorem:

Any mixture of 2 or more random variables (signals) will be “more gaussian” than its
constituentrandom variables (signals)

Inverse statement:

If one finds the transformation yieldingthe “least gaussian” signal components, these
signal components are likely closest to the original source signal configuration

-> The key to (one family) of ICA is non-gaussianity

* Non-gaussianity of a probability density function (pdf) of a variable / signal
component can be measured by
e Kurtosis (e.g. projection pursuit)
e Kullback-Leibler-Divergence (e.g. FastICA Algorithm)



Moments of probability distributions

Mean: -2

Skewness: -0.66667

Variance: 0.5

Kurtosis: 3
7 et (T = T)"
— 2
(% :?':1(3:1 — 2)




An example to illustrate ICA vs. PCA
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An example to illustrate ICA vs. PCA
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An example to illustrate ICA vs. PCA

Varimax PCA solution
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An example to illustrate ICA vs. PCA

Varimax PCA solution
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An example to illustrate ICA vs. PCA

ICA solution
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An example to illustrate ICA vs. PCA

ICA solution

Independent Component 1

Independent Component 2



ICA in practice (kurtosis example)

* The original combined kurtosis is quantified for each variable

_ % D i1 (@i — _)4
n — 2
(% E;’:l (z; — ;17)2)

* In practice, the above equation is quantified for each EEG data channel

* Then, the ‘coordinate system’ is randomly rotated, and the kurtosis of the new
variables is quantified (i.e., the above equation is applied to what is now the
‘independent component activations’)

* If the resultant kurtosis is higher, the coordinate system is 3
rotated further in the same direction until a peak is reached [ %

* The final ‘coordinate system’ is the one with the AL \\ 4
highest combined kurtosis Vs \\ \ %4 A\



Overview

* Overfitting: More sensors than signals
* Underfitting: More signals than sensors

* Temporal order of signals
* |CA disregards temporal ordering of signals
* |CA assumes samples to be independentover time

e Gaussian sources: More than one gaussian source can not be modelled in
standard ICA

* Significant time delay between sensors due to distance makes ICA unfeasible
* |ICA is blind towards source signal power
* Gradient search methods find only local maxima



ICA In practice

Rejecting stereotypical EEG artifacts



Visualizing the output
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Artifact correction using ICA
Saccades
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Artifact correction using ICA
Electrode artifacts
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Supplemental slides



Convolution: visual example
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The fourier transform

* The fourier transform identifies frequency components of an EEG signal

* It works by convolving sine-waves of different frequencies with the EEG
* Making a loop that cycles through the frequencies of interest
* Generates a (complex) sine wave at that frequency
* Convolutesthe sine wave with the signal

* The result of the convolution at each frequency is the ‘fourier coefficient’, a
measure of the power of that particular frequency

* The inverse fourier transform then denotes a reconstruction of the signal using
the same principle
* Build sine waves of specific frequencies
* Multiplythem by the timeline of fourier coefficients
* Average all the sine waves



Understanding a filter in the frequency domain
* A filter is now simply an artificially introduced (i.e., user-controlled) differential
weighting of the sine waves prior to inverse fourier transforming the signal

* This weighting across frequencies is called the filter’s “frequency response
function”
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The convolution theorem

* Another way to think about filtering is through convolution in the time domain

* Multiplication in the frequency domain = convolution in the time domain
(Convolution theorem)

* In that sense, filtering is achieved by designing a kernel with a specific set of
frequency properties

* Through the principlesof convolution, the A) Sine wave and narrow Gaussian B) Sine wave and wide Gaussian

frequency profile of the signal is passed S A A A R MAMMARMMARAN

through the frequency profile of the kernel
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Session 3

Using ICA to increase single-trial SNR



Three main ways

1. As a preprocessing / artifact correction method

Jung et al., Psychophysiology 2000; Joyce et al., Psychophysiology 2004; Li et al., Physiological Measurement 2006; Nolan et
al., J Neurosci Methods 2010; Winkler et al., Behavioral and Brain Functions 2011; Mognon et al., Psychophysiology 2011;
Viola et al., Clinical Neurophysiology 2009; ...

2. As a method to increase signal-to-noise ratio

Jung et al. Human Brain Mapping 2001; Makeig et al., Science 2002; Cao et al., Neurocomputing 2002; Debener et al., J
Neurosci 2005; lyer & Zouridakis, Cinical Neurophysiology 2007; Eichele et al., IntJ Psychophysiology 2008; Wessel &
Ullsperger, Neurolmage 2011; Wessel & Aron, Psychophysiology 2015; Wessel, Cerebral Cortex 2017; Wessel,
Psychophysiology 2017, ...

3. Totest multiple psychological processes for common neural mechanisms

Fogelson et al., Clinical Neurophysiology 2004; Gentsch et al., NeuroImage 2009; Hoffmann & Falkenstein, Human Brain
Mapping 2010; Roger et al., Neurolmage 2010; Wessel et al., J Neurosci 2012; Wessel & Aron, J Neurosci 2013; Torrecillos et
al., J Neurosci 2014; Wessel & Aron, Neurolmage2014; Wessel et al., Nature Communications 2016; Wessel, Cerebral Cortex
2017; Dutra et al., J Neurosci 2018...

for a review, see: Wessel, Brain Topography 2018




Three main ways

1. As a preprocessing / artifact correction method

* Strategy:
* Identify artifact components
e Set their weightsin the mixing matrix to zero
* Use all non-artifact componentsto reconstruct the signal

2. As a method to increase signal-to-noise ratio

* Strategy:
 Identify component that reflects process of interest
* Set all other weights in the mixing matrix to zero
* Use only this componentto reconstruct the channel space signal

3. To test multiple psychological processes for common neural mechanisms

* Strategy:
* Identify component that reflects process of interest
* Investigate whether other eventsinthe experimentyield activityin that component




Find a way to pick the right components

 Component selection is key to all approaches
* The earliest instances of each approach used subjective criteria

APPROACH?2

weights. The 30 ICs for each subject were screened for maps resembling
the typical frontocentral radial ERN topography and a contribution to
the ERP difference between incompatible error and incompatible correct
trials, that is, a larger negative deflection at the response interval for
erroneous trials. This resulted in identification of one IC for each subject,

Debener et al., J Neurosci 2005

* For artifact correction purposes, this is likely fine

* However, when selecting ICs that reflect processes of interest for the purpose of
statistical inference, such researcher degrees of freedom are suboptimal.

* Hence, automatic, algorithmic approaches to component selection are necessary



Find a way to pick the right components

* There are many algorithmic approaches aimed at
identifying artifact components

* Examples of toolboxes
« CORRMAP (Viola et al., 2009)
 FASTER (Nolan et al., 2010)
 ADJUST (Mognon et al., 2011)

* However, these approaches are suboptimal to pick
components related to cognitive processes, as they
overwhelmingly focus on spatial properties

INFO:

Template: J_00_epoch; Set 1; IC 7;
Number of datasets: 16
Correlation threshold: 0.94

Max ICs from each dataset: 3
Cluster: 15 ICs from 15 sets

Sets not contributing: #16:
Similarity =1.0000

-
o
o

Correlation (abs)
5

o
19
(3]

5 10 15 20 25 30 35 40 45 50
Sorted ICs

1.000 p—r
x
[0)]
o)
.£ 0.990
2
L
E
7] '
0975F | ! 1 L 1 1 J
mean_r=0.989 2 B 6 8 10 12 14 16
Iterations
r=0.9990 r=0.9967 r=0.9961 r=0.9955 r=0.9950
IC1, set5 IC1,set9 |cs et 11 IC 8, set7
r=0.9915 r=0.9902 r=0.9895 r=0.9870 r=0.9840
|c 4, set 10
r=0.9755 r=0.9734 r=0.9691 r=0.9686 r=0.9476

IC 8, set 12 IC 9, set 15 IC 17, set4 IC 3, set 14 IC 22, set 3

Viola et al., Clinical Neurophysiology 2009



Find a way to pick the right components




Find a way to pick the right components

* When we are looking for independent components that explain event-related
brain potentials, we want to look for event-related activity patterns

* One approach to do so is to use measures that target explained variance

Qo

I

Potential (uV)




The COMPASS logic/tool (Wessel & Ullsperger, Neurolmage 2011)

Neurolmage 54 (2011) 2105-2115

journal homepage: www.elsevier.com/locate/ynimg

Contents lists available at ScienceDirect
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Selection of independent components representing event-related brain potentials: A
data-driven approach for greater objectivity
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ABSTRACT

Following the development of increasingly precise measurement instruments and fine-grain analysis tools for
electroencephalographic (EEG) data, analysis of single-trial event-related EEG has considerably widened the
utility of this non-invasive method to investigate brain activity.
Recently, independent component analysis (ICA) has become one of the most prominent techniques for
increasing the feasibility of single-trial EEG. This blind source separation technique extracts statistically
independent components (ICs) from the EEG raw signal. By restricting the signal analysis to those ICs
representing the processes of interest, single-trial analysis becomes more flexible.
Still, the selection-criteria for in- or exclusion of certain ICs are largely subjective and unstandardized, as is the
actual selection process itself.
We present a rationale for a bottom-up, data-driven IC selection approach, using clear-cut inferential statistics
on both temporal and spatial information to identify components that significantly contribute to a certain
event-related brain potential (ERP). With time-range being the only necessary input, this approach
considerably reduces the pre-assumptions for IC selection and promotes greater objectivity of the selection
process itself.
To test the validity of the approach presented here, we present results from a simulation and re-analyze data
from a previously published ERP experiment on error processing. We compare the ERP-based IC selections
made by our approach to the selection made based on mere signal power. The comparison of ERP integrity,
signal-to-noise ratio, and single-trial properties of the back-projected ICs outlines the validity of the approach
presented here. In addition, functional validity of the extracted error-related EEG signal is tested by
investigating whether it is predictive for subsequent behavioural adjustments.

© 2010 Elsevier Inc. All rights reserved.




The COMPASS logic/tool (Wessel & Ullsperger, Neurolmage 2011)
STEP 1

Obtain spatiotemporal ERP template
v

Determine “significantly active® electrodes

STEP 3 v
v |dentifiy ICs with overlapping topography
P 4a STEP 4b '
Obtain ERP timecourses at electrodes Obtain IC timecourses

STEP 5

Comparison of IC & ERP timecourses




Assumptions and decisions

e ,classic” manual approach; utilizes information about:

TOPOGRAPHY
e.g.: frontocentral voltage distribution

TIMERANGE Bea e
0

e.g.: Peaks at approx. 100ms post-response -300 »

e.g.: Isa Negavity
FREQUENCY COMPOSITION 1 Pe
e.g.: Prominent theta-band activity

FUNCTIONAL PROPERTIES
e.g.: Isenlarged for a specific subset of trials

ERN peak



Only assumption: time range




Step 1: What is a ‘significantly active electrode’?

Grubbs Test for Outliers
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Step 2: Find components whose weight matrix shows maxima at those electrodes

Independent Components ERP
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Step 3: Pull out template ERP at each ‘significant’ electrode

I 1 1 1 1 I 1 1 1 1 l 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I

o))

1 1
RESPONSE R + 100ms R + 200ms R + 300ms R + 400ms R + 500ms



The COMPASS approach

Step 4: Pull out component activations
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Step 5: Test time courses for significant correlations with template ERP

COMPASS Output for Subject 1
POz

A
- @ )
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Component #3(-) ﬂvj AJ \\ @
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““\ \ oy @
Component # 6 (+ )
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Wessel & Ullsperger, Neurolmage, 2011
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Wessel & Ullsperger, Neurolmage, 2011
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COMPASS
GUI layout

Output folder path

Location of input file
Location of input file

Load external template [

o cucion O
Run Analysis




Download and install www.wessella b.org

Cognitive Neuro|ogy Lab RESEARCH PEOPLE PUBLICATIONS MEDIA  JOIN THE LAB

¥ — e mp e COGNITIVE
. NEUROLOGY

LABORATORY

20 .y :
B3 8 12 £l 3 / é@ ]
Frequency (Hz) CARVER COLLECE OF MEDICINE & COLLECE OF LIBERAL ARTS & SCIENCES, UNIVERSITY OF IOWA

News More »

Welcome Cheol & Nathan

August 30, 2017 - 3:45pm

We are welcoming two new members into our lab: Cheol
Soh hails from Seoul, South Korea...

New paper in JEP:HPP

May 30, 2017 - 5:45pm

Our new paper, now available online, shows that
unexpected perceptual events (in this...

W Follow @Wessel_Lab

Thanks for visiting the Cognitive Neurology Lab at the University of lowa. The lab is directed by Lab receives two grants from INI/Carver Trust
Dr. Jan R. Wessel. We are affiliated with the Department of Psychological and Brain Sciences, as April 27 2017 - 2:00pm

well as the Department of Neurology. We also participate in the Interdisciplinary Graduate
The lab has received two grants through the newly

Program in Neuroscience, the Aging Mind and Brain Initiative, the Behavioral and Biomedical ed
concelvea...

Interface Program, and the lowa Informatics Initiative.

- If you are looking for the compass EEG toolbox, click here. >

E—




Download and install

SuurEEFDrge ’Seawh

Browse Enterprise Blog Articles m Help ‘

v- B

SOLUTION CENTERS Resources Newsletters Cloud Storage Providers Business VolP Providers

Internet Speed Test

Call Center Providers

(YR TRGIn

Home / Browse / Science & Engineering / Mathematics / Statistics / COMPASS / Files

.. COMPASS

Brought to you by: janwessel
Summary Files Reviews  Support Wiki Admin Add New...

Looking for the latest version? Download COMPASSv1.3.zip (554.4 kB)

Add File | Add Folder

Home

Name #

Mm old_versions

C COMPASSV1.3.zip D

COMPASSv1.2.zip

COMPASSV1.1.zip
COMPASSV1.1.tar.gz
COMPASSvV1.0.tar.gz

COMPASSV1.0.zip

Totals: 7 Items

Modified #

Size *

554.4 kB

528.3 kB

539.0 kB

530.9 kB

530.7 kB

535.2 kB

3.2MB

2]

N

Downloads / Week #
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Data input

¢ Channel * timEpOint * epOCh datafile setname: 'VP0045 epoched pruned with ICA epochs'

filename: 'VP0045.set'

. . filepath: ' rs/janw 1 kto compass_input/error/"
* Time-locked to event of interest subject; oo/ Jamessel/Desktop/CPASS/ conpass nput/error/

group: ‘'
* Essentially, what would go into your ERP analysis condition: -
comments: [10x59 charl
nbchan: 59
trials: 160
. . pnts: 500
* Optional: A second matrix of another srate: 50
condition, identical layout o e
data: [59x500x160 single]
1ot 1
icawinv: [59x61 doublel]
icasphere: [59x59 doublel
icaweights: [61x59 doublel

* Remove non 10-20 EEG channels e hantocs: [1x39 struct
. urchanlocs: []
(EOG, MaStOIdS’ etc,) chaninfo: [1x1 struct]

ref: 'averef'
event: [1x532 struct]




Output

TEMPLATE TOPOGRAPHY, Outliers:
FCzCz
Method: Z-Value (auto)

Q-Q plotLilliefors p: 0.26016 Normal distribution of data: Likely
0.99 |- +
0.98 |-

0.95 |-
0.90 |-

-
0.75 4"’

0.50 |-

0.25 |-

0.10 |-
0.05 |- S

002+ .-
0.01 | 4-~

NORMAL DISTRIBUTION

TEMPLATE




Output

COMPASS Output for Subject 1

2 Grandaverage

Er Component # 4

1 150

PARAMETERS

Template: Generated from user input

Input: /Users/janwesseI/Desktop/COMPASS/compassinput/errorNP0005.set
Output: /Users/janwesseI/Desktop/COMPASS/compassoutput

Search Window: 1: 150
Method: z-Value @ 0.05
Polarity: Both
Correlation alpha: 0.05
CSD: Off

SUMMARY
Initial ICs: 59; Addtional TopoMatch:

97.6416 %




Output

COMPASS Output for Subject 12

Grandaverage

Component # 1

)
150

Component # 63

)
150

PARAMETERS

Template: Generated from user input

Input: /Users/janwesseI/Desktop/COMPASS/compassinput/error/VP0037.set
Output: /Users/janwesseI/Desktop/COMPASS/compassoutput

Search Window: 1: 150

Method: z-Value @ 0.05

Polarity: Both

Correlation alpha: 0.05

CSD: Off

SUMMARY
Initial ICs: 59; Addtional TopoMatch: 8 20 25
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Single-trial EEG analysis workshop

Jan R. Wessel

Department of Neurology

Department of Psychological and Brain Sciences

lowa Neuroscience Institute

University of lowa

CARVER COLLEGE OF MEDICINE & COLLEGE OF LIBERAL ARTS & SCIENCES, UNIVERSITY OF IOWA
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Single-trial EEG analysis workshop

Session 4

Time-frequency analyses



Why do it?

* Downsides of the ERP method
* Physiological Basis
* Phase-locked vs. non-phase-locked information
* Informational representation of a physiological signal



The phase-locking problem

Single trials

ERP from trial 1 to current Alpha power, trial 1 to current
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Information content of the EEG

* Bits of information in typical event-related EEG dataset

e number of electrodes
p number of time-points after event
t number of individual trials
fnumber of informative frequencies
phase & power
INFORMATION(bits)=e*p*t*f* 2

* Example of a typical experiment:
64 electrodes, 500 Hz sampling rate.
400 instances (trials) of interest for event-type in question.

* Assuming that there are ~5 meaningful frequency bands in EEG and we’re interested in
brain activity ~“500ms after the event, the informational content of the recording is
64 * 250 * 400 * 5 * 2 = 64 million bits of information




Information content of the EEG

e The ERP method

 Disregards phase information / only includes phase-locked activity
> 64 miIIio million bits

* Averages information across all frequencies/ does not resolve the signal by frequency
-> 32 miIIio.4 million bits

* Averages across all trials
-> 6.4 millior(J 400 ¥ 16,000 bits

* Selects only one electrode
-> 16,000 / 64 = 250 bits

* Cares only about one latency (or averages across a range)
-> 250 / 250 =1 bit

* Hence, in this example, for each subject and condition, the ERP method reduces a
signal with 64 million bits of information to 1 bit of information

* Single trial time-frequency analysis adds information by a factorof t * f* 2



Frequency, phase, power

Phase
Frequency (when;'z)
(how fast?) T
"theta” / &

(4-8 Hz)

(¢puoays moy)
19MOd




Most common approaches

* Sliding-window Fast-fourier transform using (multi)tapers

* Convolutionisused in the fourier transform (a series of complex sine waves are convolved
with the data to extract power and phase at the frequencies of the sine waves)

* Bandpass-filter + Hilbert transform

e Convolutionisused during filtering and during the Hilbert transform itself (where a Hilbert
/ Cauchy kernel is used to extract an analytic signal)

Projection onto real Projection onto imaginary

) Wavelet Convolution ) 10 and time axes ) 10 and time axes
T 05 © 0.5
* Complexwavelets are convolved with £ o W 2 .

the signal to extract power and phase = <o =

. . . =5 06 05 1 =5 6 o5 1 § 0.0

information according to the wavelet Time (ms) Tmems) 2

properties g, S dpgmone B
é 0.5 § 0.5
e 0 %' 0 o 0.0 :.S
%‘05 £ o5 l%a/a > ~05 <\<<.\"'\(0\
£ 0

'0//}0 O,e—o.s

—1 -1

P h

-1

-1 =05 0 0.5 1 -05 0 0.5 1
Real amplitude Time (ms)



Data structures

* These analyses do two things:
* They resolve your time domain signal into its constituentfrequencies
* Theyallow an independent quantification of power and phase

* Hence, unlike in an ERP, you are not looking at a vector of values
size (ERP) = 1500x1

but instead, you are looking at two time * frequency matrices
size (TF ERP) = 1500x30

(one for phase, one for power)

* However, the principles of single-trial regression remain exactly the same

* Instead of modellingevery time pointafter an event, you now model every point in the
time X frequency matrix.

* Be sure to account for the additional test using corrections for multiple comparisons



Surprise interrupts working memory

A ) Sk S NRD TRAL  rmueum C) WMTASK: EXP. 1
2.0secduration 1.7/2.2/2.7/3.3 sec gg)?ern?ee;ilor 2.0 sec deadline 100, Standard
(o -
~ 80
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z sinewave 260
3
® 40
=
* 20
0

Wessel et al., Nature Communications 2016



Example

Amount of surprise g _ ;. Pnovez ..

Every single p = 1)
Novel trial _

U TR / WM failure? (0/1)

((’ /V SURPRISE * WM Interaction

i \ Single-trial EEG response (after cue onset)

|-
=

EACH INDIVIDUAL SUBJECT: [ =
Vf ={l..nfreq};Vs=A{1...nsamp} :

A

Y= /30 + ﬁSurprise + ﬁWM + [5 surprisewm T €
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Example

B) WM TASK MS-IC EEG:
24

SURPRISE X WM ]
£ 2
213 E
i, :
4 —ﬁ
! one 100 200 30
Time (ms) .
Mediation
/ ERSP \

Surprise « = = » « WM

Wessel et al., Nature Communications 2016



